13 research outputs found

    From quantum cellular automata to quantum lattice gases

    Get PDF
    A natural architecture for nanoscale quantum computation is that of a quantum cellular automaton. Motivated by this observation, in this paper we begin an investigation of exactly unitary cellular automata. After proving that there can be no nontrivial, homogeneous, local, unitary, scalar cellular automaton in one dimension, we weaken the homogeneity condition and show that there are nontrivial, exactly unitary, partitioning cellular automata. We find a one parameter family of evolution rules which are best interpreted as those for a one particle quantum automaton. This model is naturally reformulated as a two component cellular automaton which we demonstrate to limit to the Dirac equation. We describe two generalizations of this automaton, the second of which, to multiple interacting particles, is the correct definition of a quantum lattice gas.Comment: 22 pages, plain TeX, 9 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages); minor typographical corrections and journal reference adde

    The Real Symplectic Groups in Quantum Mechanics and Optics

    Get PDF
    text of abstract (We present a utilitarian review of the family of matrix groups Sp(2n,)Sp(2n,\Re), in a form suited to various applications both in optics and quantum mechanics. We contrast these groups and their geometry with the much more familiar Euclidean and unitary geometries. Both the properties of finite group elements and of the Lie algebra are studied, and special attention is paid to the so-called unitary metaplectic representation of Sp(2n,)Sp(2n,\Re). Global decomposition theorems, interesting subgroups and their generators are described. Turning to nn-mode quantum systems, we define and study their variance matrices in general states, the implications of the Heisenberg uncertainty principles, and develop a U(n)-invariant squeezing criterion. The particular properties of Wigner distributions and Gaussian pure state wavefunctions under Sp(2n,)Sp(2n,\Re) action are delineated.)Comment: Review article 43 pages, revtex, no figures, replaced because somefonts were giving problem in autometic ps generatio

    Product rule for gauge invariant Weyl symbols and its application to the semiclassical description of guiding center motion

    Get PDF
    We derive a product rule for gauge invariant Weyl symbols which provides a generalization of the well-known Moyal formula to the case of non-vanishing electromagnetic fields. Applying our result to the guiding center problem we expand the guiding center Hamiltonian into an asymptotic power series with respect to both Planck's constant \hbar and an adiabaticity parameter already present in the classical theory. This expansion is used to determine the influence of quantum mechanical effects on guiding center motion.Comment: 24 pages, RevTeX, no figures; shortened version will be published in J.Phys.

    Uncertainty Relations in Deformation Quantization

    Full text link
    Robertson and Hadamard-Robertson theorems on non-negative definite hermitian forms are generalized to an arbitrary ordered field. These results are then applied to the case of formal power series fields, and the Heisenberg-Robertson, Robertson-Schr\"odinger and trace uncertainty relations in deformation quantization are found. Some conditions under which the uncertainty relations are minimized are also given.Comment: 28+1 pages, harvmac file, no figures, typos correcte

    Cotangent bundle quantization: Entangling of metric and magnetic field

    Full text link
    For manifolds M\cal M of noncompact type endowed with an affine connection (for example, the Levi-Civita connection) and a closed 2-form (magnetic field) we define a Hilbert algebra structure in the space L2(TM)L^2(T^*\cal M) and construct an irreducible representation of this algebra in L2(M)L^2(\cal M). This algebra is automatically extended to polynomial in momenta functions and distributions. Under some natural conditions this algebra is unique. The non-commutative product over TMT^*\cal M is given by an explicit integral formula. This product is exact (not formal) and is expressed in invariant geometrical terms. Our analysis reveals this product has a front, which is described in terms of geodesic triangles in M\cal M. The quantization of δ\delta-functions induces a family of symplectic reflections in TMT^*\cal M and generates a magneto-geodesic connection Γ\Gamma on TMT^*\cal M. This symplectic connection entangles, on the phase space level, the original affine structure on M\cal M and the magnetic field. In the classical approximation, the 2\hbar^2-part of the quantum product contains the Ricci curvature of Γ\Gamma and a magneto-geodesic coupling tensor.Comment: Latex, 38 pages, 5 figures, minor correction

    Dual symmetric Lagrangians and conservation laws

    Get PDF
    By using a complex field with a symmetric combination of electric and magnetic fields, a first-order covariant Lagrangian for Maxwell's equations is obtained. This leads to a dual-symmetric quantum-field theory with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase, conjugate to a conserved helicity number. [S1050-2947(99)50809-3]
    corecore